Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Cell Death Dis ; 15(3): 236, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553452

RESUMO

Metastasis is a bottleneck in cancer treatment. Studies have shown the pivotal roles of long noncoding RNAs (lncRNAs) in regulating cancer metastasis; however, our understanding of lncRNAs in gastric cancer (GC) remains limited. RNA-seq was performed on metastasis-inclined GC tissues to uncover metastasis-associated lncRNAs, revealing upregulated small nucleolar RNA host gene 26 (SNHG26) expression, which predicted poor GC patient prognosis. Functional experiments revealed that SNHG26 promoted cellular epithelial-mesenchymal transition and proliferation in vitro and in vivo. Mechanistically, SNHG26 was found to interact with nucleolin (NCL), thereby modulating c-Myc expression by increasing its translation, and in turn promoting energy metabolism via hexokinase 2 (HK2), which facilitates GC malignancy. The increase in energy metabolism supplies sufficient energy to promote c-Myc translation and expression, forming a positive feedback loop. In addition, metabolic and translation inhibitors can block this loop, thus inhibiting cell proliferation and mobility, indicating potential therapeutic prospects in GC.


Assuntos
RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Metabolismo Energético , Retroalimentação , Regulação Neoplásica da Expressão Gênica , Biossíntese de Proteínas , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/patologia
2.
Environ Geochem Health ; 46(4): 127, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483668

RESUMO

Dissolved oxygen is one of the important comprehensive indicators of river water quality, which reflects the degree of pollution in the water body. Monitoring and predicting dissolved oxygen are an important tool for water quality management, which helps to effectively maintain water ecological balance and prevent environmental problems. A single model cannot describe the dynamic characteristics of dissolved oxygen sequence, which affects the prediction accuracy. In order to obtain more accurate dissolved oxygen prediction results, decomposition techniques are commonly used to extract the main fluctuations and trends of water quality sequences. However, the high-frequency modes obtained from decomposition are still unstable. To solve this problem, this paper proposed a hybrid prediction model of dissolved oxygen concentration based on secondary decomposition and bidirectional gate recurrent unit. Firstly, dissolved oxygen sequence is preliminarily decomposed by complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and obtain several intrinsic mode functions (IMF). The fuzzy entropy (FE) is calculated to quantify the complexity of the IMF. Then, variational mode decomposition improved by northern goshawk optimization is used to decompose the IMF with higher entropy. The nonlinearity and instability of the sequence are further weakened. Finally, the bidirectional gate recurrent unit (BiGRU) neural network is used to predict each IMF component, and the final prediction result is obtained by reconstructing the prediction results of each component. In order to verify the effectiveness of the proposed model, this paper selects the dissolved oxygen data of Xin'anjiang Reservoir as the research object. The experimental results show that the RMSE, MAE, MAPE, and R2 of the proposed model are 0.1164, 0.0894, 1.0403%, and 0.9939, respectively, which is best among other comparative prediction models (BP, LSTM, GRU, BiGRU, EMD-BiGRU, CEEMDAN-BiGRU, VMD-BiGRU, and GNO-VMD-BiGRU). Therefore, this model effectively deals with high volatility and nonlinear dissolved oxygen data and provides reference for water environment management and ecological protection.


Assuntos
Água Doce , Redes Neurais de Computação , Entropia , Oxigênio , Qualidade da Água
3.
J Biomed Mater Res B Appl Biomater ; 112(4): e35403, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520706

RESUMO

For decades, titanium implants have shown impressive advantages in bone repair. However, the preparation of implants with excellent antimicrobial properties as well as better osseointegration ability remains difficult for clinical application. In this study, black phosphorus nanosheets (BPNSs) were doped into hydroxyapatite (HA) coatings using electrophoretic deposition. The coatings' surface morphology, roughness, water contact angle, photothermal properties, and antibacterial properties were investigated. The BP/HA coating exhibited a surface roughness of 59.1 nm, providing an ideal substrate for cell attachment and growth. The water contact angle on the BP/HA coating was measured to be approximately 8.55°, indicating its hydrophilic nature. The BPNSs demonstrated efficient photothermal conversion, with a temperature increase of 42.2°C under laser irradiation. The BP/HA composite coating exhibited a significant reduction in bacterial growth, with inhibition rates of 95.6% and 96.1% against Staphylococcus aureus and Escherichia coli. In addition, the cytocompatibility of the composite coating was evaluated by cell adhesion, CCK8 and AM/PI staining; the effect of the composite coating in promoting angiogenesis was assessed by scratch assay, transwell assay, and protein blotting; and the osteoinductivity of the composite coating was evaluated by alkaline phosphatase assay, alizarin red staining, and Western blot. The results showed that the BP/HA composite coating exhibited superior performance in promoting biological functions such as cell proliferation and adhesion, antibacterial activity, osteogenic differentiation, and angiogenesis, and had potential applications in vascularized bone regeneration.


Assuntos
Durapatita , Titânio , Durapatita/farmacologia , Durapatita/química , Titânio/farmacologia , Titânio/química , Osseointegração , Osteogênese , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Antibacterianos/farmacologia , Água/farmacologia , Propriedades de Superfície
4.
Int J Biol Macromol ; 265(Pt 2): 131059, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521338

RESUMO

Bone matrix vesicles are commonly acknowledged as the primary site of biomineralization in human skeletal tissue. Black phosphorus has exhibited favorable properties across various chemical and physical domains. In this investigation, a novel composite microsphere was synthesized through the amalgamation of sodium alginate (ALG) with black phosphorus nanosheets (BP) utilizing the electrospray (ES) technique. These microspheres were tailored to mimic the regulatory function of matrix vesicles (MV) upon exposure to a biomimetic mineralization fluid (SBF) during the biomineralization process. Results revealed that black phosphorus nanosheets facilitated the generation of hydroxyapatite (HA) on the microsphere surface. Live-dead assays and cell proliferation experiments showcased a cell survival rate exceeding 85 %. Moreover, wound healing assessments unveiled that M-ALG-BP microspheres exhibited superior migration capacity, with a migration rate surpassing 50 %. Furthermore, after 7 days of osteogenic induction, M-ALG-BP microspheres notably stimulated osteoblast differentiation. Particularly noteworthy, M-ALG-BP microspheres significantly enhanced osteogenic differentiation of osteoblasts and induced collagen production in vitro. Additionally, experiments involving microsphere implantation into mouse skeletal muscle demonstrated the potential for ectopic mineralization by ALG-BP microspheres. This investigation underscores the outstanding mineralization properties of ALG-BP microspheres and their promising clinical prospects in bone tissue engineering.


Assuntos
Matriz Óssea , Osteogênese , Camundongos , Animais , Humanos , Microesferas , Fósforo , Regeneração Óssea , Alginatos/farmacologia , Alginatos/química
5.
Behav Brain Res ; 465: 114962, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38499157

RESUMO

BACKGROUND: Mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP1) is upregulated in the hippocampus of patients with depression, while pharmacological inhibition of hippocampal MKP1 can mitigate depression-like behaviors in rodents. In addition, MAPK signaling regulates autophagy, and antidepressants were recently shown to target autophagic signaling pathways. We speculated that MKP1 contributes to depression by enhancing hippocampal autophagy through dephosphorylation of the MAPK isoform ERK1/2. METHODS: We established a rat depression model by exposure to chronic unpredictable mild stress (CUMS), and then examined depression-like behaviors in the sucrose preference test (SPT) and forced swimming test (FST) as well as expression changes in hippocampal MKP1, ERK1/2, phosphorylated ERK1/2, and autophagy-related proteins LC3II by Western blotting and immunostaining. These same measurements were repeated in rats exposed to CUMS following hippocampal infusion of a MKP1-targeted shRNA. Finally, the effects of MKP1 expression level on autophagy we examined in rat GMI-R1 microglia. RESULTS: CUMS-exposed rats demonstrated anhedonia in the SPT and helplessness in the FST, two core depression-like behaviors. Expression levels of MKP1 and LC3II were upregulated in the hippocampus of CUMS rats, suggesting enhanced autophagy, while pERK/ERK was downregulated. Knockdown of hippocampal MKP1 mitigated depression-like behaviors, downregulated hippocampal LC3II expression, and upregulated hippocampal pERK/ERK. Similarly, MKP1 knockdown in GMI-R1 cells upregulated pERK/ERK and reduced the number of LC3II autophagosomes, while MKP1 overexpression had the opposite effects. CONCLUSION: Enhanced hippocampal autophagy via MKP1-mediated ERK dephosphorylation may contribute to the development of depression.


Assuntos
Depressão , Hipocampo , Animais , Ratos , Antidepressivos/farmacologia , Autofagia , Depressão/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Transdução de Sinais , Estresse Psicológico/metabolismo
6.
J Biomed Mater Res B Appl Biomater ; 112(2): e35373, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38359169

RESUMO

Titanium and its alloys have found extensive use in the biomedical field, however, implant loosening due to weak osseointegration remains a concern. Improved surface morphology and chemical composition can enhance the osseointegration of the implant. Bioactive molecules have been utilized to modify the surface of the titanium-based material to achieve rapid and efficient osseointegration between the implant and bone tissues. In this study, the bioactive substance MC3T3-E1 protein-gelatin polyelectrolyte multilayers were constructed on the surface of the titanium implants by means of layer-by-layer self-assembly to enhance the strength of the bond between the bone tissue and the implant. The findings of the study indicate that the layer-by-layer self-assembly technique can enhance surface roughness and hydrophilicity to a considerable extent. Compared to pure titanium, the hydrophilicity of TiOH LBL was significantly increased with a water contact angle of 75.0 ± $$ \pm $$ 2.4°. The modified titanium implant exhibits superior biocompatibility and wound healing ability upon co-culture with cells. MC3T3-E1 cells were co-cultured with TiOH LBL for 1, 3, and 5 days and their viability was higher than 85%. In addition, the wound healing results demonstrate that TiOH LBL exhibited the highest migratory ability (243 ± 10 µm). Furthermore, after 7 days of osteogenic induction, the modified titanium implant significantly promotes osteoblast differentiation.


Assuntos
Osseointegração , Titânio , Polieletrólitos , Titânio/farmacologia , Titânio/química , Gelatina/farmacologia , Próteses e Implantes , Osteogênese , Propriedades de Superfície
7.
Int J Biol Sci ; 20(4): 1314-1331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385088

RESUMO

Peritoneal metastasis (PM) continues to limit the clinical efficacy of gastric cancer (GC). Early growth response 1 (EGR1) plays an important role in tumor cell proliferation, angiogenesis and invasion. However, the role of EGR1 derived from the tumor microenvironment in reshaping the phenotypes of GC cells and its specific molecular mechanisms in increasing the potential for PM are still unclear. In this study, we reported that EGR1 was significantly up-regulated in mesothelial cells from GC peritoneal metastases, leading to enhanced epithelial-mesenchymal transformation (EMT) and stemness phenotypes of GC cells under co-culture conditions. These phenotypes were achieved through the transcription and secretion of TGF-ß1 by EGR1 in mesothelial cells, which could regulate the expression and internalization of CD44s. After being internalized into the cytoplasm, CD44s interacted with STAT3 to promote STAT3 phosphorylation and activation, and induced EMT and stemness gene transcription, thus positively regulating the metastasis of GC cells. Moreover, TGF-ß1 secretion in the PM microenvironment was significantly increased compared with the matched primary tumor. The blocking effect of SHR-1701 on TGF-ß1 was verified by inhibiting peritoneal metastases in xenografts. Collectively, the interplay of EGR1/TGF-ß1/CD44s/STAT3 signaling between mesothelial cells and GC cells induces EMT and stemness phenotypes, offering potential as a therapeutic target for PM of GC.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce , Neoplasias Peritoneais , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Peritônio/patologia , Transdução de Sinais/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Microambiente Tumoral/genética , Animais
8.
Transl Psychiatry ; 14(1): 130, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424085

RESUMO

Chronic stress is the primary environmental risk factor for major depressive disorder (MDD), and there is compelling evidence that neuroinflammation is the major pathomechanism linking chronic stress to MDD. Mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) is a negative regulator of MAPK signaling pathways involved in cellular stress responses, survival, and neuroinflammation. We examined the possible contributions of MKP-1 to stress-induced MDD by comparing depression-like behaviors (anhedonia, motor retardation, behavioral despair), neuroinflammatory marker expression, and MAPK signaling pathways among rats exposed to chronic unpredictable mild stress (CUMS), overexpressing MKP-1 in the hippocampus, and CUMS-exposed rats underexpressing MKP-1 in the hippocampus. Rats exposed to CUMS exhibited MKP-1 overexpression, greater numbers of activated microglia, and enhanced expressions of neuroinflammatory markers (interleukin [IL]-6, [IL]-1ß, tumor necrosis factor [TNF]-ɑ, and decreased phosphorylation levels of ERK and p38 in the hippocampus as well as anhedonia in the sucrose preference test, motor retardation in the open field, and greater immobility (despair) in the forced swimming tests. These signs of neuroinflammation and depression-like behaviors and phosphorylation levels of ERK and p38 were also observed in rats overexpressing MKP-1 without CUMS exposure, while CUMS-induced neuroinflammation, microglial activation, phosphorylation levels of ERK and p38, and depression-like behaviors were significantly reversed by MKP-1 knockdown. Moreover, MKP-1 knockdown promoted the activation of the MAPK isoform ERK, implying that the antidepressant-like effects of MKP-1 knockdown may be mediated by the ERK pathway disinhibition. These findings suggested that hippocampal MKP-1 is an essential regulator of stress-induced neuroinflammation and a promising target for antidepressant development.


Assuntos
Depressão , Transtorno Depressivo Maior , Animais , Ratos , Anedonia , Antidepressivos/uso terapêutico , Depressão/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Modelos Animais de Doenças , Regulação para Baixo , Hipocampo/metabolismo , Interleucina-6/metabolismo , Doenças Neuroinflamatórias , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
J Multidiscip Healthc ; 17: 735-741, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390433

RESUMO

Objective: This study investigates the impact of nursing interventions on treatment outcomes and adverse reaction rates in renal cell carcinoma (RCC) patients treated postoperatively with Interleukin-2 and recombinant human Interferon. Methods: In a retrospective analysis of 90 RCC patients, 43 received standard care (control group), while 47 received additional nursing interventions (intervention group), including psychological care, vital signs monitoring, dietary care, adverse reaction management, and post-discharge care. Patients with concurrent major diseases or other malignancies were excluded. Key assessments included clinical symptom improvement, treatment efficacy, and postoperative adverse reactions. Results: Among the 90 participants, no significant demographic differences were found between the two groups. The intervention group showed significant improvements in fever resolution, leukocyte normalization, and shorter hospital stays. The overall treatment effectiveness was similar in both groups (90.7% in the intervention group vs 91.5% in the control group). However, the intervention group experienced significantly fewer postoperative adverse reactions, including fever, gastrointestinal symptoms, bone marrow suppression, and neurological abnormalities (6.3% vs 23.2%). Conclusion: The study suggests that nursing interventions can improve treatment outcomes by reducing postoperative adverse reactions in RCC patients receiving postoperative Interleukin-2 and recombinant human Interferon. The overall effectiveness of treatment and care was comparable between the groups. Further extensive studies are needed to confirm these findings and fully understand the impact of nursing interventions on RCC patient outcomes.

10.
Eur J Pharmacol ; 967: 176356, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325797

RESUMO

Accumulating evidence suggests that excess fructose uptake induces metabolic syndrome and kidney injury. Here, we primarily investigated the influence of catalpol on fructose-induced renal inflammation in mice and explored its potential mechanism. Treatment with catalpol improved insulin sensitivity and hyperuricemia in fructose-fed mice. Hyperuricemia induced by high-fructose diet was associated with increases in the expressions of urate reabsorptive transporter URAT1 and GLUT9. Treatment with catalpol decreased the expressions of URAT1 and GLUT9. Futhermore, treatment with catalpol ameliorated renal inflammatory cell infiltration and podocyte injury, and these beneficial effects were associated with inhibiting the production of inflammatory cytokines including IL-1ß, IL-18, IL-6 and TNF-α. Moreover, fructose-induced uric acid triggers an inflammatory response by activiting NLRP3 inflammasome, which then processes pro-inflammatory cytokines. Treatment with catalpol could inhibit the activation of NLRP3 inflammasome as well. Additionally, TLR4/MyD88 signaling was activated in fructose-fed mice, while treatment with catalpol inhibited this activation along with promoting NF-κB nuclear translocation in fructose-fed mice. Thus, our study demonstrated that catalpol could ameliorate renal inflammation in fructose-fed mice, attributing its beneficial effects to promoting uric acid excretion and inhibit the activation of TLR4/MyD88 signaling.


Assuntos
Hiperuricemia , Glucosídeos Iridoides , Nefrite , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Úrico/metabolismo , Inflamassomos/metabolismo , Hiperuricemia/induzido quimicamente , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/metabolismo , Frutose/efeitos adversos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , NF-kappa B/metabolismo , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo
11.
Bioresour Technol ; 395: 130329, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224785

RESUMO

Phosphorus (P) in nature mostly exists in an insoluble state, and humic reducing microorganisms (HRMs) can dissolve insoluble substances through redox properties. This study aimed to investigate the correlations between insoluble P and dominant HRMs amenable to individual culture during biochar composting. These analyses revealed that, in comparison to the control, biochar addition increased the relative abundance of dominant HRMs by 20.3% and decreased redox potential (Eh) levels by 15.4% hence, enhancing the moderately-labile-P and non-labile-P dissolution. The pathways underlying the observed effects were additionally assessed through structural equation modeling, revealing that biochar addition promoted insoluble P dissolution through both the direct effects of bacterial community structure as well as the direct effects of HRMs community structure and indirect effects based on Eh of HRMs community structure. This research offers a better understanding of the effect of HRMs on insoluble P during the composting process.


Assuntos
Compostagem , Solo/química , Fósforo , Carvão Vegetal/química , Oxirredução , Esterco
12.
Acad Radiol ; 31(1): 273-285, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37684182

RESUMO

RATIONALE AND OBJECTIVES: This meta-analysis was aimed at evaluating the predictive value of radiomics in the context of transarterial chemoembolization (TACE) therapeutic response (TR) for hepatocellular carcinoma (HCC) and patients' survival status (SS) and providing favorable evidence for clinical application. MATERIALS AND METHODS: We searched for literature in which radiomics was applied to assess the TR of TACE for HCC and the affected patients' survival status across PubMed, Embase, Cochrane Library and Web of Science until Jul 12, 2023. The quality of included literature was evaluated using a radiomics quality score (RQS) approach, and a meta-analysis was conducted using Stata15.0. RESULTS: Twenty-four studies were included in the analysis. The meta-analysis revealed that the overall concordance-index (C-index) based on radiomics for predicting the TR and SS with TACE was 0.85 and 0.78, respectively. The combined radiomics-clinical model provided the best performance in evaluating the TR and SS associated with TACE. The C-index was 0.93 and 0.88 for TR and 0.84 and 0.80 for SS, in the training and validation sets, respectively. These values were higher than the 0.87 and 0.79 for TR and 0.79 and 0.70 for SS, respectively with the radiomics model, and 0.71 and 0.66 for TR and 0.72 and 0.66 for SS, respectively with the clinical model. CONCLUSION: The radiomics prediction model for the efficacy of TACE in HCC showed a satisfactory prediction performance. The combined radiomics-clinic prediction model had the best performance.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia
13.
J Exp Clin Cancer Res ; 42(1): 269, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858201

RESUMO

BACKGROUND: Important roles of INHBB in various malignancies are increasingly identified. The underlying mechanisms in gastric cancer (GC) microenvironment are still greatly unexplored. METHODS: The clinical significance of INHBB and the correlation between INHBB and p-p65 in GC were assessed through analyzing publicly available databases and human paraffin embedded GC tissues. The biological crosstalk of INHBB between GC cells and fibroblasts was explored both in vitro and in vivo. RNA-seq analyses were performed to determine the mechanisms which regulating fibroblasts reprogramming. Luciferase reporter assay and chromatin immunoprecipitation (CHIP) assay were used to verify the binding relationship of p65 and INHBB in GC cells. RESULTS: Our study showed that INHBB level was significantly higher in GC, and that increased INHBB was associated with poor survival. INHBB positively regulates the proliferation, migration, and invasion of GC cells in vitro. Also, activin B promotes the occurrence of GC by reprogramming fibroblasts into cancer-associated fibroblasts (CAFs). The high expression of INHBB in GC cells activates the NF-κB pathway of normal gastric fibroblasts by secreting activin B, and promotes fibroblasts proliferation, migration, and invasion. In addition, activin B activates NF-κB pathway by controlling TRAF6 autoubiquitination to induce TAK1 phosphorylation in fibroblasts. Fibroblasts activated by activin B can induce the activation of p65 phosphorylation of GC cells by releasing pro-inflammatory factors IL-1ß. p65 can directly bind to the INHBB promoter and increase the INHBB transcription of GC cells, thus establishing a positive regulatory feedback loop to promote the progression of GC. CONCLUSIONS: GC cells p65/INHBB/activin B and fibroblasts p65/IL-1ß signal loop led to the formation of a whole tumor-promoting inflammatory microenvironment, which might be a promising therapeutic target for GC.


Assuntos
Ativinas , Fibroblastos , NF-kappa B , Neoplasias Gástricas , Microambiente Tumoral , Humanos , Linhagem Celular Tumoral , Fibroblastos/metabolismo , NF-kappa B/metabolismo , Neoplasias Gástricas/patologia , Microambiente Tumoral/fisiologia , Ativinas/metabolismo
14.
J Magn Reson Imaging ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37897302

RESUMO

BACKGROUND: Accurate preoperative histological stratification (HS) of intracranial solitary fibrous tumors (ISFTs) can help predict patient outcomes and develop personalized treatment plans. However, the role of a comprehensive model based on clinical, radiomics and deep learning (CRDL) features in preoperative HS of ISFT remains unclear. PURPOSE: To investigate the feasibility of a CRDL model based on magnetic resonance imaging (MRI) in preoperative HS in ISFT. STUDY TYPE: Retrospective. POPULATION: Three hundred and ninety-eight patients from Beijing Tiantan Hospital, Capital Medical University (primary training cohort) and 49 patients from Lanzhou University Second Hospital (external validation cohort) with ISFT based on histopathological findings (237 World Health Organization [WHO] tumor grade 1 or 2, and 210 WHO tumor grade 3). FIELD STRENGTH/SEQUENCE: 3.0 T/T1-weighted imaging (T1) by using spin echo sequence, T2-weighted imaging (T2) by using fast spin echo sequence, and T1-weighted contrast-enhanced imaging (T1C) by using two-dimensional fast spin echo sequence. ASSESSMENT: Area under the receiver operating characteristic curve (AUC) was used to assess the performance of the CRDL model and a clinical model (CM) in preoperative HS in the external validation cohort. The decision curve analysis (DCA) was used to evaluate the clinical net benefit provided by the CRDL model. STATISTICAL TESTS: Cohen's kappa, intra-/inter-class correlation coefficients (ICCs), Chi-square test, Fisher's exact test, Student's t-test, AUC, DCA, calibration curves, DeLong test. A P value <0.05 was considered statistically significant. RESULTS: The CRDL model had significantly better discrimination ability than the CM (AUC [95% confidence interval, CI]: 0.895 [0.807-0.912] vs. 0.810 [0.745-0.874], respectively) in the external validation cohort. The CRDL model can provide a clinical net benefit for preoperative HS at a threshold probability >20%. DATA CONCLUSION: The proposed CRDL model holds promise for preoperative HS in ISFT, which is important for predicting patient outcomes and developing personalized treatment plans. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

15.
Artigo em Inglês | MEDLINE | ID: mdl-37897622

RESUMO

The conventional process for converting starch to glucose is energy-intensive. To lower the cost of this process, a novel strain of Paenibacillus phyllosphaerae CS-148 was isolated and identified, which could directly hydrolyze raw starch into glucose and accumulate glucose in the fermentation broth. The effects of different organic and inorganic nitrogen sources, the culture temperature, the initial pH, and the agitation speed on the yield of glucose were optimized through the one-factor-at-a-time method. Nine factors were screened by Plackett-Burman design, and three factors (raw corncob starch, yeast extract and (NH4)2SO4) had significant effects on glucose yield. Three significant factors were further optimized using Box-Behnken design. Under the optimized fermentation conditions (raw corncob starch 40.4 g/L, yeast extract 4.27 g/L, (NH4)2SO4 4.39 g/L, KH2PO4 2 g/L, MgSO4`7H2O 2 g/L, FeSO4`7H2O 0.02 g/L, NaCl 2 g/L, KCl 0.5 g/L, inoculums volume 4%, temperature 35 °C, agitation rate 150 rpm, and initial pH 7.0), the maximum glucose yield reached 17.32 ± 0.46 g/L, which is 1.33-fold compared to that by initial fermentation conditions. The maximum conversion rate and glucose productivity were 0.43 ± 0.01 g glucose/g raw corn starch and 0.22 ± 0.01 g/(L·h), respectively. These results implied that P. phyllosphaerae CS-148 could be used in the food industry or fermentation industry at a low cost.

16.
J Integr Med ; 21(6): 593-604, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37805293

RESUMO

OBJECTIVE: The aim of this study is to identify molecules from traditional Chinese medicine (TCM) with potential activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants. METHODS: We applied the Apriori algorithm to identify important combinations of herbs in the TCM prescriptions for the treatment of coronavirus disease 2019 (COVID-19). Then, we explored the active components and core targets using network pharmacology. In addition, the molecular docking approach was performed to investigate the interaction of these components with the main structural and non-structural proteins, as well as the mutants. Furthermore, their stability in the binding pockets was further evaluated with the molecular dynamics approach. RESULTS: A combination of Amygdalus Communis Vas., Ephedra Herba and Scutellaria baicalensis Georgi was selected as the important herbal combination, and 11 main components and 20 core targets against COVID-19 were obtained. These components, including luteolin, naringenin, stigmasterol, baicalein, and so on, were the potentially active compounds against COVID-19. The binding affinity of these compounds with the potential targets was as high as the positive controls. Among them, baicalein could interfere with multiple targets simultaneously, and it also interfered with the interaction between spike protein and angiotensin-converting enzyme 2 receptor. Additionally, almost all the systems reached stability during dynamics simulation. CONCLUSION: The combination of A. communis, Ephedra Herba and S. baicalensis was the most important herbal combination for the treatment of COVID-19. Baicalein may be a potential candidate against SARS-CoV-2 and its variants. Please cite this article as: Song JB, Zhao LQ, Wen HP, Li YP. Herbal combinations against COVID-19: A network pharmacology, molecular docking and dynamics study. J Integr Med. 2023;21(6):593-604.


Assuntos
COVID-19 , Medicamentos de Ervas Chinesas , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2 , Farmacologia em Rede , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa
17.
Colloids Surf B Biointerfaces ; 231: 113548, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37729798

RESUMO

Calcium phosphate cement (CPC) has attracted extensive interest from surgeons and materials scientists. However, the collapsibility of calcium phosphate cement limits its clinical application. In this work, a gel network of SA-CA formed by the reaction of citric acid (CA) and sodium alginate (SA) was introduced into the α-TCP/α-CSH composite. Furthermore, a high proportion of α-CSH provided more calcium sources for the system to combine with SA forming a gel network to improve the cohesion property of the composite, which also played a regulating role in the conversion of materials to HA. The morphology, physicochemical properties, and cell compatibility of the composites were studied with SA-CA as curing solution. The results show that SA-CA plays an important role in the compressive strength and collapse resistance of bone cement, and its properties can be regulated by changing the content of CA. When CA is 10 wt%, the mechanical strength is the highest, reaching 12.49 ± 2.03 MPa, which is 265.80% higher than water as the solidifying liquid. In addition, the cell experiments showed that the samples were not toxic to MC3T3 cells. The results of ALP showed that when SA-CA were used as curing solution, the activity of ALP was higher than that of blank sample, indicating that the composite bone cement could be conducive to the differentiation of osteoblasts. In this work, the α-CSH/α-TCP based composite regulated by gel network of SA-CA can provide a promising strategy to improve the cohesion of bone cement.


Assuntos
Sulfato de Cálcio , Fosfatos , Sulfato de Cálcio/química , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Ácido Cítrico/farmacologia , Sulfatos , Alginatos/farmacologia , Alginatos/química , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Teste de Materiais
18.
Acad Radiol ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37741734

RESUMO

RATIONALE AND OBJECTIVES: To develop a nomogram to stratify tumor recurrence (TR) in intracranial solitary fibrous tumors (ISFTs) based on the clinical, radiological, and pathological features. MATERIALS AND METHODS: A total of 215 patients from XXX and 48 patients from XXX, diagnosed with ISFT based on histopathological findings, were included. The patients were randomly divided into training and test cohorts at a ratio of 8:2. Information regarding clinical, radiological, and histopathological features, and the clinical outcomes was retrospectively analyzed. Univariate and multivariate analyses were performed using the Cox proportional hazard model for TR in the training cohort. A nomogram incorporating the independent risk factors was developed in the training cohort and validated in the test cohort. Its predictive performance was analyzed using the Harrell C-index. Decision curve analysis (DCA) was used to evaluate the net clinical benefit. RESULTS: The Harrell C-indices for TR at 3 and 5 years were 0.845 (0.578-0.944) and 0.807 (0.612-0.901) for the test cohort, respectively. In the test cohort, the nomogram provided a net clinical benefit in the DCA over the TR scheme or non-TR scheme. Although postoperative radiotherapy (PORT) was useful for TR prevention, high doses (≥46 Gy) were not superior to lower doses in prolonging the progression-free survival. CONCLUSION: The nomogram obtained in our study had a good predictive performance and could be used for ISFT patients.

19.
ESC Heart Fail ; 10(5): 3102-3113, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37608687

RESUMO

AIMS: Coronary artery disease (CAD) is the most common cause of heart failure (HF). This study aimed to identify cytokine biomarkers for predicting HF in patients with CAD. METHODS AND RESULTS: Twelve patients with CAD without HF (CAD-non HF), 12 patients with CAD complicated with HF (CAD-HF), and 12 healthy controls were enrolled for Human Cytokine Antibody Array, which were used as the training dataset. Then, differentially expressed cytokines among the different groups were identified, and crucial characteristic proteins related to CAD-HF were screened using a combination of the least absolute shrinkage and selection operator, recursive feature elimination, and random forest methods. A support vector machine (SVM) diagnostic model was constructed based on crucial characteristic proteins, followed by receiver operating characteristic curve analysis. Finally, two validation datasets, GSE20681 and GSE59867, were downloaded to verify the diagnostic performance of the SVM model and expression of crucial proteins, as well as enzyme-linked immunosorbent assay was also used to verify the levels of crucial proteins in blood samples. In total, 12 differentially expressed proteins were overlapped in the three comparison groups, and then four optimal characteristic proteins were identified, including VEGFR2, FLRG, IL-23, and FGF-21. After that, the area under the receiver operating characteristic curve of the constructed SVM classification model for the training dataset was 0.944. The accuracy of the SVM classification model was validated using the GSE20681 and GSE59867 datasets, with area under the receiver operating characteristic curve values of 0.773 and 0.745, respectively. The expression trends of the four crucial proteins in the training dataset were consistent with those in the validation dataset and those determined by enzyme-linked immunosorbent assay. CONCLUSIONS: The combination of VEGFR2, FLRG, IL-23, and FGF-21 can be used as a candidate biomarker for the prediction and prevention of HF in patients with CAD.

20.
Adv Healthc Mater ; 12(29): e2301809, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37571957

RESUMO

3D printing has been widely applied for preparing artificial blood vessels, which will bring innovation to cardiovascular disorder intervention. However, the printing resolution and anti-infection properties of small-diameter vessels (Φ < 6 mm) have been challenging in 3D printing. The primary objective of this research is to design a novel coaxial 3D-printing postprocessing method for preparing small-size blood vessels with improved antibacterial and angiogenesis properties. The coaxial printing resolution can be more conveniently improved. Negatively charged polyvinyl alcohol (PVA) and alginate (Alg) interpenetrating networks artificial vessels are immersed in positively charged chitosan (CTS) solution. Rapid dimensional shrinkage takes place on its outer surface through electrostatic interactions. The maximum shrinkage size of wall thickness can reach 61.2%. The vessels demonstrate strong antibacterial properties against Escherichia coli (98.8 ± 0.5%) and Staphylococcus aureus (97.6 ± 1.4%). In rat dorsal skin grafting experiments, Cu2+ can promote angiogenesis by regulating hypoxia-inducible factor-1 pathway. No artificial blood vessel blockage occurs after 5 days of blood circulation in vitro.


Assuntos
Antibacterianos , Quitosana , Ratos , Animais , Antibacterianos/farmacologia , Quitosana/farmacologia , Pele , Escherichia coli , Staphylococcus aureus , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...